

Averal N. Kandala

RF/Wireless IC Design Researcher
github.com/avekan33

aveled@berkeley.edu
avekan33.github.io

EDUCATION

University of California, Berkeley	<i>August 2021 - August 2026</i>
Ph.D. in Electrical Engineering & Computer Sciences	GPA: 4.0/4.0
Advisor: Professor Ali M. Niknejad	
University of California, Berkeley	<i>June 2020 - August 2021</i>
M.S. in Electrical Engineering & Computer Sciences	GPA: 4.0/4.0
Thesis: <i>Harnessing Alpha Radiation to Power Miniaturized Implantable Medical Devices</i>	
University of California, Berkeley	<i>August 2016 - May 2020</i>
B.S. in Electrical Engineering & Computer Sciences	GPA: 3.97/4.0; Highest Honors

Selected Coursework: Adv. RFICs (A+), ADCs (A+), RFICs (A+), Adv. Analog ICs (A), Adv. Digital ICs (A+), DSP (A+), Machine Learning (A), Optimization (A+), Power Electronics (A), Comp. Arch. (A), Probability & Random Processes (A), MEMS (A+), Feedback & Control (A)

RESEARCH

Berkeley Wireless Research Center (BWRC)	<i>June 2020 - Present</i>
<i>Graduate Student Researcher</i>	
<ul style="list-style-type: none">• Current research on novel frequency synthesis techniques for integrated FMCW sensing and communication; two solo RF/mixed-signal tapeouts completed in TSMC 28 nm.• Taped out BASE-Hub, a wireless, implantable SoC providing chronic power, data storage, and communication for multiplexed “plug and play” sensing in X-FAB 180 nm.• Studied the use of alpha radiation to power mm-scale medical implants.	

UC Berkeley Swarm Lab	<i>June 2019 - May 2020</i>
<i>Undergraduate Student Researcher</i>	
<ul style="list-style-type: none">• Investigated the effect of “anchor loss” in ultrasonic energy harvesting by mm-scale piezoelectric crystals, with the end goal of medical implant miniaturization.	

INDUSTRY

Qualcomm Atheros	<i>Summer 2024</i>
<i>RF/Analog IC Design Intern</i>	Santa Clara, CA
<ul style="list-style-type: none">• Wireless product R&D in Connectivity RFA team.	
Samtec Optical Group	<i>Summer 2018</i>
<i>Electrical Engineering Intern</i>	Santa Clara, CA
<ul style="list-style-type: none">• Optical link R&D; firmware, BER, and eye-diagram testing.	

AWARDS

Outstanding Graduate Student Instructor Award	2025
Distinction awarded to top 10% of UC Berkeley TAs for excellence in teaching.	
National Science Foundation (NSF) Graduate Research Fellowship	2020
Stipend of \$34,000 and tuition allowance of \$12,000 for three out of five fellowship years.	
Elena Catelli and Kenneth Leung Memorial Scholarships	2016
Gift awards for academic excellence in Italian and future study of electrical engineering.	

TEACHING

Advanced Analog Integrated Circuits (EE240B)	<i>Spring 2024</i>
<i>Graduate Student Instructor</i>	Evaluation: 6.8/7.0
• Primary discussion TA, also responsible for admin., homework content, and office hours.	
Microelectronic Devices & Circuits (EE105)	<i>Fall 2023, Spring 2020</i>
<i>Graduate Student Instructor</i>	Evaluation: 6.68/7.0, 4.67/5.0
• Lead TA responsible for admin., homework, and discussion section instruction and content.	
Great Ideas in Computer Architecture (CS61C)	<i>Fall 2019</i>
<i>Undergraduate Student Instructor</i>	Evaluation: 4.28/5.0
• Taught one discussion and one laboratory section per week, staffed office hours.	

PUBLICATIONS

1. **A. N. Kandala**, S. Wang, J. E. Blecha, Y.-H. Wang, R. K. Lall, A. M. Niknejad, et al., “Millimeter-scale radioluminescent power for electronic sensors,” in *iScience*, 2025.
2. R. Lall, K. Lee, S. Chopra, **A. Kandala**, M. Evans, Y. Seo, A. Niknejad, and M. Anwar, “Low cost, high temporal resolution optical fiber-based -photon sensor for real-time pre-clinical evaluation of cancer-targeting radiopharmaceuticals,” in *Biosensors and Bioelectronics*, 2024.
3. S. Sonmezoglu, A. Darvishian, K. Shen, M. J. Bustamante, **A. Kandala**, and M. M. Maharbiz, “A Method and Analysis to Enable Efficient Piezoelectric Transducer-Based Ultrasonic Power and Data Links for Miniaturized Implantable Medical Devices,” in *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, 2021.

COURSE PROJECTS

2023-EE240C: 14-bit, 30 MS/s Pipeline ADC Model @ 1.2 V, 72 dB DR, 65 dB SNDR in 45 nm.

2021-EE241B: Wide Tuning Range All-Digital Phase-Locked Loop w/ Fine Res. in Pred. 7 nm.

2020-EE240B: Switched-Capacitor Gain Stage with 64 dB DR @ 150 MHz. **EE123:** An optimized JPEG-like image compression algorithm and AFSK communication protocol in Python.

2019-CS152: C++ branch predictor based on the Gshare scheme. **EEC128:** State feedback with a Luenberger observer to achieve a self-erecting inverted pendulum.

2018-EECS151: Three-stage pipelined RISC-V CPU (with forwarding) in Verilog with FPGA audio and visual peripherals. **EE140:** LCD Display Driver Amplifier in 45 nm.