Wireless IC Design Researcher github.com/avekan33 averal@berkeley.edu avekan33.github.io

Education

University of California, Berkeley Ph.D. in Electrical Engineering & Computer Sciences Advisor: Professor Ali M. Niknejad	August 2021 - Present GPA: 4.0 /4.0
University of California, Berkeley	June 2020 - August 2021
M.S. in Electrical Engineering & Computer Sciences	GPA: 4.0 /4.0
Thesis: Harnessing Alpha Radiation to Power Miniaturized Impla	ntable Medical Devices
University of California, Berkeley	<i>August 2016 - May 2020</i>
B.S. in Electrical Engineering & Computer Sciences	GPA: 3.97 /4.0; Highest Honors

Selected Coursework: Adv. RFICs (A+), ADCs (A+), RFICs (A+), Adv. Analog ICs (A), Adv. Digital ICs (A+), DSP (A+), Machine Learning (A), Optimization (A+), Power Electronics (A), Comp. Arch. (A), Probability & Random Processes (A), MEMS (A+), Feedback & Control (A)

Research

Berkeley Wireless Research Center (BWRC)

Graduate Student Researcher

- Current research on novel frequency synthesis techniques for integrated FMCW sensing and communication, taping out in TSMC 28 nm.
- Taped out BASE-Hub, a wireless, implantable SoC providing chronic power, data storage, and communication for multiplexed "plug and play" sensing in X-FAB 180 nm.
- Studied the use of alpha radiation to power mm-scale medical implants.

UC Berkeley Swarm Lab

 $Undergraduate \ Student \ Researcher$

• Investigated the effect of "anchor loss" in ultrasonic energy harvesting by mm-scale piezoelectric crystals, with the end goal of medical implant miniaturization.

PUBLICATIONS

- 1. A. N. Kandala, S. Wang, J. E. Blecha, Y.-H. Wang, R. K. Lall, A. M. Niknejad, et al., "Millimeter-scale radioluminescent power for electronic sensors," in *iScience*, 2025.
- 2. R. Lall, K. Lee, S. Chopra, A. Kandala, M. Evans, Y. Seo, A. Niknejad, and M. Anwar, "Low cost, high temporal resolution optical fiber-based -photon sensor for real-time pre-clinical evaluation of cancer-targeting radiopharmaceuticals," in *Biosensors and Bioelectronics*, 2024.
- 3. S. Sonmezoglu, A. Darvishian, K. Shen, M. J. Bustamante, A. Kandala, and M. M. Maharbiz, "A Method and Analysis to Enable Efficient Piezoelectric Transducer-Based Ultrasonic Power and Data Links for Miniaturized Implantable Medical Devices," in *IEEE Transactions on Ul*trasonics, Ferroelectrics, and Frequency Control, 2021.

June 2020 - Present

June 2019 - May 2020

Outstanding Graduate Student Instructor Award	2025
Distinction awarded to top 10% of UC Berkeley TAs for excellence in teaching. National Science Foundation (NSF) Graduate Research Fellowship Stipend of \$34,000 and tuition allowance of \$12,000 for three out of five fellowship years.	2020
Elena Catelli and Kenneth Leung Memorial Scholarships Gift awards for academic excellence in Italian and future study of electrical engineering.	2016
TEACHING	

Advanced Analog Integrated Circuits (EE240B)	Spring 2024	
Graduate Student Instructor	Evaluation: $6.8/7.0$	
• Primary discussion TA, also responsible for admin., homework content, and office hours.		
Microelectronic Devices & Circuits (EE105)	Fall 2023, Spring 2020	
Graduate Student Instructor	Evaluation: $6.68/7.0, 4.67/5.0$	
\bullet Lead TA responsible for admin., homework, and discussion section instruction and content.		
Great Ideas in Computer Architecture (CS61C)	Fall 2019	
Undergraduate Student Instructor	Evaluation: $4.28/5.0$	
• Taught one discussion and one laboratory section per week, staffed office hours.		

INDUSTRY

Qualcomm Atheros	Summer 2024
RF/Analog IC Design Intern	Santa Clara, CA
• Wireless product R&D in Connectivity RFA team.	
Samtec Optical Group	Summer 2018
Electrical Engineering Intern	Santa Clara, CA

• Optical link R&D; firmware, BER, and eye-diagram testing.

COURSE PROJECTS

2023-**EE240C**: 14-bit, 30 MS/s Pipeline ADC Model @ 1.2 V, 72 dB DR, 65 dB SNDR in 45 nm. 2021-**EE241B**: Wide Tuning Range All-Digital Phase-Locked Loop w/ Fine Res. in Pred. 7 nm. 2020-**EE240B**: Switched-Capacitor Gain Stage with 64 dB DR @ 150 MHz. **EE123**: An optimized JPEG-like image compression algorithm and AFSK communication protocol in **Python**.

2019-CS152: C++ branch predictor based on the Gshare scheme. EEC128: State feedback with a Luenberger observer to achieve a self-erecting inverted pendulum.

2018-EECS151: Three-stage pipelined RISC-V CPU (with forwarding) in Verilog with FPGA audio and visual peripherals. EE140: LCD Display Driver Amplifier in 45 nm.

Outreach

Pioneers in Engineering

Hardware Advisor, Sensor Team Project Manager

- Mentored new staff and led engineering workshops for PiE's high school robotics competitions.
- Directly supervised staff and was responsible for maintaining PCB CAD designs and facilitating assembly of sensor boards as Project Manager.

August 2016 - May 2020

Berkeley, CA